

A3D 3.0 Platform and
Resource Manager
Guide

Disclaimer
This document may not, in whole or part, be copied, reproduced, reduced, or translated by any means, either mechanical or electronic,

without prior consent in writing from Aureal Inc. The information in this document has been carefully checked and is believed to be

accurate. However, Aureal Inc. assumes no responsibility for any inaccuracies that may be contained in this manual. In no event will

Aureal Inc. be liable for direct, indirect, special, incidental, or consequential damages resulting from any defect or omission in this

manual, even if advised of the possibility of such damages. Aureal Inc. reserves the right to make improvements in this manual and

the products it describes at any time, without notice or obligation.

Copyright
 © 1999, 2000 Aureal Inc. All rights reserved.

Trademarks
A3D, Aureal, Wavetracing, and the Aureal logo are trademarks of Aureal Inc.

The A3D logo and Vortex are registered trademarks of Aureal Inc.

All other trademarks belong to their respective owners and are used for identification purposes only.

Document Number: DO3012-021100

i

Contents

PLATFORM MATRIX ...2
INTRODUCTION ..1
METHODS OF DIRECT PATH SOURCE RENDERING ..2

Rendering Channel Overview ...2
Hardware (A3D/DS3D)...3
DS3D Support ...3

A2D...4
Usage ..4
Virtual Channels ...5
Determining a Source’s Render Method ...5

THE RESOURCE MANAGER SOFTWARE ARCHITECTURE...6
Importance ..7
Audibility...8
Priority ..8
Weight ...8

SOURCE TYPES ..9
Managed Sources..9
Static (Unmanaged) Sources...9

REFLECTION RESOURCE MANAGEMENT...10

1

Chapter 1: Introduction
One of the key features of A3D 3.0 is the streaming Resource Manager, which was introduced in
A3D 2.0. The A3D 3.0 engine enables the application developer to specify an arbitrarily complex
audio scene, with virtually any number of sources and wall surfaces. The end user’s PC system,
however, is limited to a finite number of 3D audio channels, and a finite number of surface
reflections. The task of optimally mapping the sound sources to hardware can be a difficult task,
and greatly affects the believability of the rendered audio scene.

For most developers, using the Resource Manager will be a transparent process. Others however,
will want to take a look at how exactly it operates to get the most from it. This document covers
various aspects of the Resource Manager, its functions, and how it relates to DS3D and A2D
rendering. The document will also provide more detail about A2D. Applications written to the
A3D 3.0 API can use Aureal Vortex or hardware DirectSound3D resources, if available, to avoid
host processing whenever possible. In the absence of hardware resources, A2D runs stand-alone
on any host CPU to emulate A3D in a software-only environment. A2D is based on a heavily
speed-optimized, feature-reduced version of A3D.

Written in tightly optimized x86 assembly code, A2D offers great speed (lower CPU usage than
other host-based solutions) and great audio quality (saturated mixing, linear interpolation, sample
rate conversion, interaural time delay-based positioning).

Finally, this document opens with a platform guide which details what features of A3D 3.0 will
work with each sound card.

2

Platform Matrix
This table serves to detail the capabilities of several A3D and non-A3D sound cards/audio
chipsets currently on the market, and which features of A3D 3.0 will function on them.

Chipseta Aureal

Vortex2

Aureal

Vortex1

Aureal Vortex

Advantage

Diamond

Freedom PCI

EMU 10k1 EMU 8000 Ensoniq

ES137x

ESS

Canyon3D

HW 3D

channels

76 8 0 8 32 0 0 32

Rendering

Level

A3D A3D A3D A3D DS3D A2D A2D DS3D

Direct Path Yes Yes Yes Yes Yes Yesb Yesb Yes

Volumetric

Sources

Yes Yes Yes Yes Yes Yes Yes Yes

Reflections Yes No No No No No No No

Occlusions Yes Yes Yes Yes Yesb Yesb Yesb Yesb

Reverb Yes No Nod No Yesc No Yesc Yesc

Dolby Digital Yes Yes Yes Yes Yes Yes Yes Yes

Streaming

Audio / MP3

Yes Yes Yes Yes Yes Yes Yes Yes

Example

Cards

Aureal Vortex2

SQ2500

Aureal Vortex2

SQ3500 Turbo

Xitel Storm

Platinum

Turtle Beach

Montego II

Xitel Storm VX

Turtle Beach

Montego

Aztech PCI338

Orchid

NuSound PCI

Aureal Vortex

SQ1500

I/O Magic

MagicWave V1

Absolute MM

Outrageous 3D

Sound Lite

Diamond

Monster Sound

Diamond

Monster Sound

M80

Diamond

Monster Sound

MX200

Sound Blaster

Live! series

Sound Blaster

AWE32

Sound Blaster

AWE 64

Sound Blaster

PCI64

Sound Blaster

PCI 128

Ensoniq

AudioPCI

Diamond

MX400

Terratec DMX

a All specifications are believed to be accurate based on manufacturer data sheets, advertisements, reviews, and audio testing

with applications such as DSShow3D as of 11/99.

b Through Aureal A2D rendering engine.

c Through sound card’s native EAX-compatible reverb rendering engine.

d Reverb support is planned for upcoming driver release

1

Chapter 2: The Resource Manager

Introduction
A3D 3.0 enables the application developer to specify an arbitrarily complex audio scene, with
virtually any number of sources and wall surfaces. The end user’s PC system, however, is limited
to a finite number of 3D audio channels, and a finite number of surface reflections. The task of
optimally mapping the sound sources to hardware can be a difficult task, and greatly affects the
believability of the rendered audio scene. Therefore, A3D 3.0 includes a powerful audio
hardware resource manager (RM) that enables the application developer to easily optimize sound
rendering for an arbitrary audio scene.

RM functionality includes:

• Sophisticated management of looping buffers.
Looping buffers are prioritized and managed just like single-shot buffers.

• Continuation of single-shot buffers
Single-shot buffers aren’t thrown away when “swapped out,” but continue playing if
resources become available. The restart sample point is where it should have been if the
buffer was never swapped out.

• Virtualization of buffers
When a buffer is swapped out, A3D 3.0 simulates the sample read pointer movement.
Therefore, status/pointer queries to swapped buffers respond as though the buffer was
still playing. Buffer swap status is also available to the application, if needed.

• Advanced prioritization heuristic
Ensures that the most important sounds get played.

All of these features are provided transparently to the application developer — no special
function calls are necessary to utilize any of these baseline features.

The advanced resource manager also provides a simple, powerful extension to the original
resource manager: application-specific priority. By specifying a priority value for each buffer,
the developer retains a high degree of control over the relative importance of each sound, while

2

still leaving the mechanics of resource management to A3D. Priority can also be modified on the
fly, allowing the importance of a sound to change as the acoustic scene changes over time. This
small addition to the baseline API results in a more intelligent resource management, and hence a
more realistic acoustic environment.

The resource manager also includes A2D, Aureal’s fallback 3D sound engine. A2D is a highly
optimized, software-based, 3D sound rendering and mixing engine which sits on top of the sound
card driver. The net effect is that A3D 3.0 provides 3D functionality for all generic sound cards.
If an A3D application is run on a system without 3D sound hardware, A2D is automatically
enabled. Therefore, the application developer can write to a single API for all sound card
hardware. A2D is described in greater detail later in this document.

Methods of Direct Path Source Rendering
The RM optimizes direct path and reflection audio resources for audio scene rendering. Direct
path resources are called channels. A channel represents an individual source rendering pipe for
real-time 3D spatialization. Three different channels are available: hardware, software, and
virtualized.

Rendering Channel Overview

Hardware 3D A2D Virtualized

Audiblea Yes Yes No

Preferenceb Highest Mid Lowest

No. Availablec System-specific Application-controlled Infinite

CPU Overheadd System-specific Determinant Negligible

a Audible means the channel actually renders the audio input to the speaker outputs.

b Preference is the relative measure of channel value vs. the other channels

c No. Available is the number of channels available for concurrent rendering.

d CPU Overhead is a general gauge of MIPS utilization.

3

Hardware (A3D/DS3D)

Hardware channels are channels that are rendered and mixed by the 3D sound card. Hardware is
considered the premium, or most preferred, rendering channel type, therefore the resource
manager optimizes the audio scene by allocating hardware channels to the most important
sources (described below).

The resource manager can only use as many hardware channels as the target sound card supports.
If the developer prefers to limit the total number of hardware channels used, regardless of
hardware availability, the application can call Root::SetNumHWBuffers() to set the maximum
number of open hardware channels.

DS3D Support

A3D 3.0 can utilize DS3D-enabled sound cards for hardware rendering, though advanced A3D
features such as reflections and atmospheric effects are not available. A3D 3.0 automatically
utilizes any available DS3D hardware if the end user system does not have an A3D sound card
installed.

Aureal is committed to providing an optimal audio engine for all sound cards, in the form of A3D
3.0. A3D 3.0, however, can’t gauge the performance or audio quality of third-party
DirectSound3D sound cards. We are committed to making A3D 3.0 perform well with all DS3D
sound cards; however, just like any other DS3D audio application, A3D 3.0 cannot directly
control the algorithms used for spatialization, Doppler, reverb, and distance modeling. Therefore,
problems may arise utilizing some DS3D sound cards with A3D 3.0. These problems include:

• Drivers that take significant CPU resources, dramatically reducing overall performance
of system.

• Audio effect is not as expected — distance model is incorrect, or audio is clicky, etc.
• Hardware not matched well with A2D.

Considering the unpredictable differences between generic DS3D hardware products, the end
result of the DS3D support can’t be guaranteed and diligence through application testing is
recommended. This testing should be nothing more or less than what would be necessary had you
used DS3D directly. The A2D rendering engine can provide much more predictable and constant
results and serves as an alternative should problems arise.

4

A2D

A2D is Aureal’s real-time software 3D audio and mixing engine for use with A3D 3.0 titles. It is
embedded in the A3D 3.0 API DLL, and is transparently used in lieu of, or in conjunction with,
3D sound hardware. The developer can easily utilize A2D for multiple purposes:

• A3D 3.0 is a 3D audio scene rendering system. End user systems, however, may not
support 3D sound — either the sound card is a legacy ISA card, or one of the limited
number of PCI sound cards that do not support A3D or hardware DirectSound3D.

• A3D 3.0 can be used to “fill out” the number of 3D channels supported in hardware. For
example, sound cards that only support five 3D sources could be increased to sixteen or
more, via A2D.

• As an option, A2D can be used instead of actual 3D sound card hardware, where either
performance or audio quality of the sound card is unknown.

The A2D effect includes direct path spatialization, Doppler, occlusions, and distance (gain)
modeling. It does not include reflections or atmospheric EQ effects. A2D is highly optimized for
efficient 3D rendering on host systems, and generally utilizes less CPU resources than standard
software mixers.

The resource manager always utilizes any available hardware channels before falling back to
A2D.

Usage

A2D is, for the most part, transparent to the application developer. A2D is automatically utilized
to “fill out” the number of 3D hardware channels. The number of A2D channels can also be
controlled via Root::SetNumFallbackBuffers(), where 12 is the default setting and 64 is the
maximum. Setting this to a value larger than 64 will cause the call to fail. Valid A2D channels
only consume CPU bandwidth when they are playing audio. Though the consumption is minimal,
the number of A2D should be limited to only render audibly-important sources. A good
benchmark is 16-32 A3D and A2D sources, total.

5

Virtual Channels

Playing sources which are not allocated to hardware or A2D (i.e., the least important playing
sounds, when more sources are playing than hardware/A2D channels are available) are attached
to virtual channels. Virtual channels are inaudible, however the sample read pointer is still
updated as though the source is playing. Since static sources are always attached to hardware or
A2D, only managed sources are virtualized. The CPU cost of virtual buffers is negligible.

Determining a Source’s Render Method

Applications can call Source::GetStatusEx() to determine a source’s current render mode.
Rendering models differ for static buffers and dynamic buffers. Static buffers do not change
render modes after allocation. Dynamic buffers, however, are completely controlled by the
resource manager, where render mode is determined by source importance and the rendering
resources available: hardware, software A2D, and virtualized. Since relative importance changes
over time (due to audibility and priority changes, and sound sources starting and finishing), the
resource manager bumps managed buffers from one particular render mode to another, as
needed, to ensure the most important sources are rendered using the most optimal renderers.

6

The Resource Manager Software
Architecture

The A3D 3.0 resource manager aids the application developer by mapping any arbitrary sound-
scene to the specific, and limited, resources of any given end user’s platform. The application
may open, and concurrently play, any number of managed buffers. The resource manager
dynamically maps the most important managed sounds to hardware or software rendering
engines. The RM performs this dynamic mapping by streaming the audio source data into the
hardware channels, in the background of the application. Alternatively, static, or unmanaged,
buffers can be created that bypass the streamer engine, and take direct advantage of available
hardware. These can be used when the limitations of the streaming engine are undesirable (for
example, when an application developer prefers to use a custom resource management engine).

FIGURE 1 illustrates the basic block functionality of the resource manager.

FIGURE 1._Resource Manager Block Functionality

������������
������������
������������������

�����������������
�����
����� �

�
�
�

����������
����������
������������

������������
��
��

������������
������������
����������������

����������������
����
����

�����������
�����������
��������������

��������������
���
���

�����������
�����������
��������������

��������������
���
���

���������
���������
������������

�����������
��
��

����������
����������
��������������

�������������
���
���

�����������
�����������
����������������

���������������
����
����

������������
������������
������������������

�����������������
����
����

�����������
�����������
����������������

���������������
���
���

����������
����������
��������������

�������������
��
��

���������
���������
������������

�����������
�
�

�����������
�����������
��������������

��������������
���
���

����������
����������
������������

������������
��
��

���������
���������
����������

����������
�
�

������������
������������
����������������

����������������
����
����

�����������
�����������
�����������

�����������
�����������

���
���
��������������

����
����
����

��
��

����
����
����
���

�����
�����
�����
�����

��
����
����
����
����
���

����
����
����
����
����
����

��������������������������
�����
�����
�����
�����
�����

��������������������
��������������������

��
��
��
��
��

��
�
�
�
�
�
��

��
��
��
��
��
��
��

��
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�

�����������������������������������
�������
����������

����������
����
�����������
�������
����������

����������
����
���������������������������������������
�������
����������

����������
����
�����������
�������
����������

����������
����
��������������������������������

static
important

unimportant
not playing

Buffer Status
VirtualSoftware

A2D Engine

Streamer Engine

Hardware
3D Engine

dynamic buffersstatic buffers

���������

����

����

����
����
����
����
����

��

��

��
��
��
��
��

�

�

�
�
�
�
�

����

����

����
����
����
����
����

���

���

���
���
���
���
���

��

��

��
��
��
��
��

�����

�����

�����
�����
�����
�����
�����

�

�

�
�
�
�
�

����

����

����
����
����
����
����

����������
����������
����������

����������
����������

��
��
������������

���
���
���

���������
���������
���������

���������
���������

�
�
����������

��
��
��

������������
������������
������������

�������������
�������������

�����
�����
�����������������

����
����
����

���������
���������
���������

����������
����������

��
��
�����������

��
��
��

������������
������������
������������

�������������
�������������

�����
�����
�����������������

�����
�����
�����

���������
���������
���������

����������
����������

��
��
�����������

��
��
��

����������
����������
����������

�����������
�����������

���
���
�������������

���
���
���

�����������
�����������
�����������

������������
������������

����
����
���������������

����
����
����

��������
����
����
����
����
����
����
���

���
���
���

������
���
���
���
���
��

���

���
���
���
���

�
�
�
�

��
��
��
��

����
����
����
����

���
���
���
���

��
��
��
��

����
����
����
����

���
���
���
���

��
��
��
��

�����
�����
�����
�����

����
����
����
����

���
���
���
���

��
��
��
��

�����
�����
�����
�����

7

Every 100 milliseconds, the resource manager performs the following tasks to optimize the audio
scene:

1. Calculate the importance of each buffer (see below).
2. Build list of playing buffers that are sorted by importance.

(Where T = the Total number of sources in this list and where T = M + N +V).
3. Determine number of hardware (M) and A2D channels (N) available.
4. Attach first M sources to the M available hardware channels, detaching less important

sources as needed. This leaves T - M sources unattached.
5. Attach next N sources to the N available A2D channels, detaching less important sources

as needed. This leaves T - (M + N) sources unattached.
6. Attach rest (V) of playing sources to V virtual channels. Virtual channels are inaudible,

though the buffer read pointer changes as though the buffer was still playing. Thus all T
sources have been attached.

Every 10 milliseconds, the streamer copies the appropriate audio data to the corresponding
hardware/A2D buffer, update read pointers, etc.

Importance

Importance is a measure of the merit of hearing a particular sound in the sound scene. For
example, a loud explosion near the listener would have a high importance, but a bird chirping in
the distance would probably have a low importance. Importance of each buffer is periodically
calculated by the resource manager, and used to determine which buffers are rendered.

The formula for source importance is:

Equation 1a: Source is not Playing

Importance = -1 × ∞

Equation 1b: Source is Playing

Importance = Audibility × Weight + Priority × (1.0 – Weight)

Audibility, priority, and weight are described below.

8

Audibility

Audibility is the time-varying loudness, based on three parameters:

• Source volume
• Distance from source to listener
• Amount of occlusion between source and listener

Audibility is calculated internally by the A3D 3.0 engine, and indirectly controlled by the
application (by varying source volume, position, etc.). Audibility ranges from 0.0 – 1.0, where
1.0 is a full-gain, unoccluded source within minimum-distance of the listener.

Priority

Priority is the application-specified “relative importance” of a sound. For example, in a “shooter”
game, an attacking monster’s growl generally has a higher priority than a background waterfall
effect, since it is more apt to fixate the player’s attention, even if the waterfall is louder.

The application sets the priority of each source by calling Source::SetPriority(). The new
priority value takes effect on the next importance calculation, within 100 ms. Priority ranges
from 0.0 – 1.0. By default, priority is set to 0.0.

Weight

In the Equation 1b, importance is the weighted-average of priority and audibility; this weight is
directly specified by the developer’s application, by calling Root::SetWeight().

When calculating importance, weight is defined as the weighted-average term for all source
priority values. Conversely, (1.0 – weight) is the weighting-average term for all source
audibility values. For example, a weight of 0.5 would apply priority and audibility equally.

The application sets the source-global weight by calling Root::SetWeight(). The new weight
value takes effect on the next importance calculation, within 100 ms. Weight ranges from 0.0 –
1.0. By default, weight is set to 0.5.

9

Source Types
The resource manager, or RM, supports two RM-specific modes that qualify level of resource
management: managed and static. The application specifies the RM mode of a particular source
via NewSource(), and it remains constant throughout the lifetime of the source. RM modes apply
only to the direct path of the source; reflections are handled separately, described below.

Managed Sources

Sources created with the RM_MODE_STATIC flag cleared are managed sources. All managed
sources share the available hardware and A2D resources, as described above. Resources are
allocated, in real-time, to the most important sources. Source importance is based on both the
audibility, or loudness, of the source, and the source priority, which is specified directly by the
application.

Creating Managed Sources

Applications create a managed source by calling NewSource() with the RM_MODE_STATIC
field of dwFlags clear. Since a managed source is not attached at creation, to a particular
software or hardware channel, both ALLOCATE_SW and ALLOCATE_HW fields must be
clear.

Managed sources won’t fail creation, or wave allocation, due to sound card or A2D limitations.
Therefore, applications may open many more RM-managed sources than an end user’s sound
card, and/or A2D renderer, supports.

Static (Unmanaged) Sources
Sources created with the RM_MODE_STATIC flag set are RM-static sources. The direct path of
a RM-static source is entirely unmanaged by the resource manager, giving complete control to
the application. This mode should be used when playback of a particular wave file must be
guaranteed, or when the overhead of resource-management is undesirable.

Creating Static Sources

An RM-static source is created during NewSource() by ORing the dwFlags field with
RM_MODE_STATIC. ALLOCATE_SW and ALLOCATE_HW flags can also be set (mutually
exclusive) to force allocation to hardware or software. Without these additional flags, a source is
created in hardware, if it is available, otherwise in software.

10

Static sources can fail allocation if the hardware and/or A2D resources are not available.

Note: Static source allocation failure is reported via IA3dSource::LoadWave() or
IA3dSource::AllocateWave(), not IA3d4::NewSource()! Make sure the static buffer succeeds
the Source::LoadWave() Source::AllocateWave() call before assuming hardware is allocated.

A3D 3.0 uses the following heuristic to determine if a static source fails creation:

In Source::LoadWave() and Source::AllocateWave():

if ((dwFlags & ALLOCATE_SW) && (dwFlags && ALLOCATE_HW))
return fail

if !(dwFlags & ALLOCATE_SW)

{
attempt to allocate hardware source
if success

return success
else if fail and (dwFlags & ALLOCATE_HW)

return fail

}

attempt to allocate A2D source

if success
return success

else return fail

Once a static buffer succeeds the LoadWave() or AllocateWave() call, the hardware or A2D
resources remain allocated until the wave is released.

Reflection Resource Management
The resource manager optimizes the hardware utilization of reflections for both static and
dynamic sources. When the end user system supports reflections, the geometry engine performs

11

the calculations necessary to specify and control the reflections in real-time. These reflection
controls are sent to the resource manager, where they are mapped to hardware. Since the
application may specify more audible reflections than the hardware supports, the resource
manager allocates reflection channels to the most important reflections. Reflection importance is
defined as its individual audibility.

For example, Source A is playing with four reflections. The corresponding reflection audibilities
are: 0.25, 0.5, 0.75, and 1.0. Source B is playing with 3 reflections with audibility values of 0.33,
0.66, 0.99. Assuming the hardware only supports 4 reflections, the reflections from each source
would be: A-1.0, B-0.99, A-0.75, and B-0.66. These reflections are rendered by the sound card
until next 100 ms timer tick, where audibility-based reflection optimization happens again.

